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ABSTRACT OF THESIS 

 
 
 
 

MAGNETIC RESONANCE IMAGING OF THE HUMAN INFERIOR VENA CAVA 
DURING LOWER BODY NEGATIVE PRESSURE 

 
 

Magnetic Resonance Imaging (MRI) was used to determine changes in the size of the 
Inferior Vena Cava (IVC) as a result of blood pooling induced by lower body negative 
pressure (LBNP).  Images of the IVC of supine human subjects (10 males, 10 females) 
were obtained under four conditions: 1) steady-state 0 mmHg LBNP, 2) steady-state –
35 mmHg LBNP, 3) ramping from 0 to –35 mmHg LBNP, 4) ramping from –35 to 0 
mmHg LBNP.  Volumes for a given IVC segment were obtained under the first two 
conditions during both end inspiration and end expiration breath-holds.  Inferior Vena 
Cava widths were measured under all four conditions at the levels of portal entry and 
portal exit.  The IVC volume for men and women combined decreased 41% due to 
LBNP (p < 1.02 x 10-9).  The IVC was 64.4% wider at portal exit than at portal entry in 
men (p < 0.0003).  Lower Body Negative Pressure induced a decrease in men’s vena 
cava width up to 46% at portal exit and up to 62% at portal entry.  Supported by NASA 
EPSCoR WKU 522611 and NIH GCRC MO1 RR262. 
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1 Introduction 

Orthostatic intolerance is a condition characterized by the cardiovascular 

system’s inability to adjust to stresses that impede return of blood to the heart and 

delivery to the brain.  Challenges can be as common as moving from a sitting or supine 

position to a standing one.  Symptoms of orthostatic stress can be as minor as a “head 

rush” or as problematic as a condition called “syncope.”  Syncope is characterized by a 

loss of consciousness resulting from insufficient cerebral perfusion; this end result is a 

consequence of the cardiovascular system’s failure to regulate blood pressure and 

blood flow [1]. 

Syncope affects a wide range of people.  Astronauts face a significant risk of 

syncope as a result of prolonged weightlessness [2].  Spinal cord trauma victims often 

have difficulty regulating against orthostatic stresses during diagnostic and therapeutic 

procedures that use tilt tables [3].  Many otherwise healthy people also suffer from 

syncope of unexplained origin. 

Given current plans to conduct manned missions to Mars, the risk of syncope in 

astronauts is of particular interest to NASA and partner space programs.  Given current 

technology, a trip to Mars will take months, exposing astronauts to a weightless 

environment for a very long time before descending into Mars’ gravitational pull [4].  

Because prolonged weightlessness has been shown to increase the risk of syncope in 

astronauts, effective countermeasures are critical to preventing them from succumbing 

to orthostatic stress far from medical care. 

On Earth, six to seven percent of the elderly (60+ years of age) experience 

syncope annually with 30 percent recurrence within one year of their initial episode.  

Syncope accounts for three percent of all emergency room visits and up to six percent 

of general hospital medical admissions, costing roughly $750 million to diagnose and 

treat.  Unexplained syncope, cases in which the root cause of the stress is unknown, 

accounts for fifty percent of all reported cases [5]. 

Preventing syncope requires better understanding of the cardiovascular system’s 

responses to orthostatic challenges.  Although researchers have conducted research 

dealing with blood pressure, hormone levels, and fluid flows, information describing 

volume distributions and shifts within the body has been lacking.  Magnetic Resonance 
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Imaging (MRI) can provide insights to these missing pieces of the puzzle.  Applying 

orthostatic stress within a magnetic bore, however, can be a difficult task because of 

MRI’s limitations including space constraints, MR bore orientation, and exclusion of 

magnetic materials.  Lower Body Negative Pressure (LBNP) is one orthostatic stress 

that can be used within an MRI system. 

Lower Body Negative Pressure causes blood to pool in the lower extremities in a 

manner similar to the venous pooling that occurs prior to many syncopal episodes.  This 

orthostatic stress has been used to study cardiovascular regulation.  Despite the wealth 

of knowledge that has been accumulated through the use of this technique, few 

experiments have been conducted to determine fluid volume shifts in specific locations 

within the vascular system of the human body as a result of exposure to this stress.  

One important area is the venous side of the circulation because of its high compliance 

and because of its role in providing venous return during orthostatic stress.  The 

combination of MRI and LBNP provides a unique opportunity to non-invasively identify 

these changes beyond the capabilities of more global techniques such as impedance 

measurement and echocardiography. 

The objective of the present study was to determine, using MRI, changes in size 

and shape of the inferior vena cava as a result of the orthostatic stress imposed by 

LBNP.  Measurements were taken during supine control, LBNP-ramping, and steady-

state LBNP conditions.  The possible relative contributions of biomechanical responses 

(initial changes during and immediately after ramping LBNP) and regulatory responses 

(responses during the steady state period following ramping) were also investigated.
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2 Background 

 

2.1 Orthostatic Challenge 

Orthostatic challenge describes the resistance to blood flow from the lower 

extremities toward the heart.  The cardiovascular system regulates vascular pressure in 

order to maintain adequate blood flow.  As resistance to flow increases, pressure must 

increase proportionately in order to maintain constant flow. 

Equation 1 describes fluid flow as a function of pressure and resistance.   

                            Flow = Pressure / Resistance             (Eq. 1) 

Fluid pressure can be obtained from Equation 2.    

 

                                 P = P0 + ρgh               (Eq. 2) 

This formula can be applied to the cardiovascular system, where the second component 

(ρgh) describes the orthostatic challenge (ρ = volume density, g = gravitational 

acceleration, h = the vertical distance between the lower extremities and the heart). 

 

2.1.1 Orthostatic Stress 

Orthostatic stress causes redistribution of fluid within the body.  Blood volume 

shifts within the vasculature because of changes to transmural pressure, causing 

venous pooling in the lower extremities.  This pooling, in turn, reduces mean arterial 

blood pressure as well as the return of blood flow from the lower body to the heart [6].    

These reductions can lead to syncope, depending upon the individual’s ability to adapt 

to the challenge. 

 

2.1.2 Lower Body Negative Pressure 

Lower Body Negative Pressure (LBNP) describes the application of vacuum 

pressure outside the lower body, from the iliac crest of the hip down to the bottom of the 

feet (see Figure 2.1).  Reduction of pressure within the chamber causes a reduction in 

extravascular pressure, therefore causing an increase in transmural pressure.  Although 

orthostatic stresses induced by tilt and standing do not affect extravascular and 

transmural pressures in precisely the same way as LBNP, the adaptive mechanisms 
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triggered by LBNP are consistent with the body’s response to other orthostatic 

challenges [7,8].    

LBNP causes a decrease in central blood volume as fluid pools in the lower 

body, initially collecting in the venous side of the vasculature.  As venous structures in 

the lower body fill, the corresponding increase in hydrostatic pressure draws vascular 

fluid into the interstitial space [9].  The cardiovascular system therefore loses plasma 

volume, resulting in lower venous return to the heart.  This reduction in central blood 

volume causes cardiac output and stroke volume to decrease, compromising regulation 

of arterial blood pressure and blood flow [6].  The cardiovascular system’s 

compensation for these changes includes increases in heart rate and peripheral 

vascular resistance [10]. 

Besides being the only method for inducing the pooling of blood within the lower 

extremities in subjects in a zero gravity environment, LBNP provides a method for 

creating fluid shifts in a controlled manner on Earth.  When considering MR imaging, 

LBNP provides an optimal orthostatic stress for MRI studies because of physical 

constraints.  A standing or tilt test is not possible with closed, horizontal MR bore units.  

Thus, LBNP provides a means for applying a consistent, controllable orthostatic stress 

to subjects within the parameters imposed by the closed, horizontal bore of an MR unit. 

These LBNP studies served as a precursor to additional MRI investigations of the 

effects of six degree head-down bed rest upon the human cardiovascular system [see 

Figure 2.2].  Six degree head-down tilt provides one accepted tool for studying the 

effects of prolonged weightlessness on the cardiovascular system.  Together, these 

companion studies provided an extensive view of fluid distribution in the cardiovascular 

system during control, deconditioning (i.,e, head down bed rest), and application of a 

provocative stimulus (i.e., LBNP).  

 

2.2  Imaging Technology: Magnetic Resonance 

Magnetic Resonance Imaging provided an opportunity to visualize the fluid 

distribution within the cardiovascular system - as a function of orthostatic stress – with 

unprecedented resolution and clarity.  Some studies have attempted to calculate fluid 

distribution between whole body segments with impedance plethysmography but are 
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unable to discriminate between vascular and extravascular space, much less venous 

and arterial distributions [11, 12].  Some studies utilized ultrasound technology, but 

lacked the resolution and clarity that MR provides.  Magnetic Resonance offers the best 

combination of measurement accuracy, soft tissue contrast, and resolution compared to 

other non-invasive techniques for visualizing internal anatomy [13]. 

 

2.3 Scanning Planes 

MR images are mostly acquired within three fundamental planes: Axial, Coronal, 

and Sagittal.  Figure 2.3 illustrates the Axial and Coronal planes with respect to the MR 

bore [in which the human body typically lies supine].  The MR bore contains three 

gradient coils that alter magnetic field strength along each of the principal axes (X, Y, 

Z).  Manipulation of field strength along these axes creates gradients that establish the 

imaging planes.  The magnetic isocenter is the center point of the axes and the center 

of the bore.  Magnetic field strength never changes at this point, even during the 

application of gradients [14]. 

 
2.3.1 Axial 

Axial slices are selected by manipulating the Z gradient to alter field strength and 

precessional frequency along the magnet’s Z axis [14].  Axial planes are defined by the 

X- and Y-axes, as illustrated in Figure 2.3. 

 

2.3.2 Coronal 

Coronal slices are selected by manipulating the Y gradient to alter field strength 

and precessional frequency along the magnet’s Y axis [14].  Coronal planes are defined 

by the X- and Z-axes, as illustrated in Figure 2.3.  

 

2.3.3 Sagittal 

Sagittal slices are selected by manipulating the X gradient to alter field strength 

and precessional frequency along the magnet’s X axis [14].  Sagittal planes, not 

explicitly illustrated in Figure 2.3, are defined by the Y- and Z-axes.  
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2.3.4 Oblique 

Oblique slices are selected by using two gradients in combination [14]. 
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Figure 2.1: Lower Body Negative Pressure Chamber 
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Figure 2.2: Six Degree Head Down Bed Rest Setup in MR Chamber 
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Figure 2.3: Magnetic Resonance Imaging Planes 
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3 Methods 

 

3.1 Subjects 

Data were acquired from studies conducted over a two-year period at the 

University of Kentucky Clinical Research Center (UK CRC) and at the University of 

Kentucky Magnetic Resonance Imaging Spectroscopy Center (UK MRISC).  The 

complete subject pool consisted of ten healthy men (178.8 ± 1.8 cm, 77.6 ± 3.4 kg, 25.2 

± 1.0 yr) and ten healthy women (166.8 ± 2.7 cm, 70.9 ± 2.9 kg, 25.8 ± 1.2 yr).  All 

women’s menstrual periods were naturally cycling.  They were studied between days 

two and ten of their menstrual cycle.  Men were studied in the first year during a three-

month period, and women were studied during a three-month period in the second year. 

All volunteers were oriented to LBNP and to the MRI chamber at least one week 

prior to participation in the study.  Orientation also included screening for habits (e.g., 

smoking) and medical conditions (e.g., cardiovascular disease) that would have 

disqualified them from participation.  All subjects provided written consent to the test 

protocols approved by the local Institutional Review Board (IRB approval 91-00012). 

 

3.2 Study Protocol 

Table 3.1 outlines the experimental protocol used with each volunteer.  Note that 

with alternating subjects, the MRI studies preceded the CRC studies. 

 

3.3 MR Imaging Setup 

 

3.3.1 MRI Chamber 

The MRI system was a 1.5 Tesla Siemens system.  The MR bore was 60 

centimeters in diameter, making it wide enough to accommodate an LBNP chamber.  

The bore of the MR imager was easily long enough to contain an LBNP chamber since 

the MR bore was designed to fit human adults from head to toe. 

 

 

 

 10



www.manaraa.com

3.3.2 LBNP Chamber 

The Lower Body Negative Pressure (LBNP) Chamber used in the MR imaging 

experiments was specially constructed from nonmagnetic materials such as different 

forms of plastic.  Because of the magnet’s strength, even small magnetic objects can 

become lethal projectiles; magnetic materials in the LBNP chamber could have also 

produced image artifacts.  These risks motivated the construction of the LBNP chamber 

with nonmagnetic materials.  The chamber’s size was also restricted to fit within the MRI 

chamber.  Consequently, the LBNP chamber used in the MRISC was 48 centimeters 

[19 inches] in diameter and 125.5 centimeters [50 inches] long.  By contrast, the 

standard LBNP chamber that was used in the CRC was 52.71 centimeters [21 inches in 

diameter] and 120.48 centimeters [48 inches long]. 

 

3.4 Imaging Sequences 

 

3.4.1 Time Of Flight  

Magnetic Resonance signals are sensitive to flow and to motion [15].  Hydrogen 

nuclei that move during image acquisition can create flow motion artifacts such as 

“phase ghosting” or “time of flight” displacement [14]. 

 In order to produce a spin echo MR signal, a nucleus must receive both an 

excitation pulse and a rephasing pulse.  In a spin echo sequence, if a nucleus only 

receives one of these two pulses, it does not produce an spin echo and hence no MR 

signal is received.  Stationary nuclei within the region of the excitation coil always 

receive both pulses, but moving nuclei might only receive the excitation pulse before 

moving through the targeted slice, thereby missing the rephasing pulse.  Other moving 

nuclei might lie outside the imaging plane during the excitation pulse but then enter the 

imaging plane in time to receive the rephasing pulse.  This condition in which nuclei 

receive one of the two pulses describes time of flight [14]. 

 The inflow and outflow of spins in a spin echo sequence result in variations in the 

amplitude of the signal due to the different history of RF pulses each spin receives 

during its transit of the image slice.  This effect is due strictly to the RF pulses and exists 

even in the absence of imaging gradients.  In addition to this effect, the amplitude of the 
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total signal is affected by the presence of imaging gradients.  To reduce the 

dependence of the signal on the velocity of motion, imaging sequences incorporate 

techniques known as gradient moment nulling and gradient moment rephasing.  

Additionally, by making the initial inversion pulse non-spatially selective (exciting the 

entire imaging region rather than a specific part of the imaging region such as the 

inferior vena cava), the effects of multiple pulses on the image wind up being relatively 

inconsequential.    

 One method of compensating for the effects of flowing nuclei on image quality, 

particularly in the case of venous blood flow, is the application of “gradient moment 

rephasing” which compensates for the altered phase values of nuclei flowing along a 

gradient.  By using additional gradients to force the altered phases back to their original 

values, the flowing nuclei do not change phase when exposed to the main gradient [14].  

Because these flowing nuclei have the same phase as stationary nuclei, their signals 

combine to create an even more intense, brighter signal within the slice [14].  Increased 

signal from fresh, previously unexcited nuclei flowing into the imaged region is known as 

“Inflow Signal Enhancement” [15]. 

The Time of Flight imaging sequences of this study utilized gradient moment 

rephasing to establish gray levels that were dependent upon Inflow Signal 

Enhancement.  Because of the cumulative effect of flowing nuclei, the highest velocity 

appeared as white and zero velocity appeared as black.  This technique was very useful 

for imaging vascular structures with laminar flow such as the inferior vena cava.  

Because image gray level correlated to velocity profile, the shape of the inferior vena 

cava itself could be captured due to the velocity profile of blood through that structure.  

Additionally, the initial inversion pulse was non-spatially selective, diminishing the 

effects of the multiple pulses on image clarity.    

In structures with laminar flow such as the inferior vena cava, fluid velocity is 

generally highest in the center and approaches zero at the vessel walls.  Velocity 

profiles may be parabolic or more blunt in shape, depending upon flow conditions.  A 

time of flight image of this vessel would appear brightest in the center and decrease in 

image brightness toward the vessel walls which would appear black, providing clear 

definition of the interior walls of the vessels, as illustrated in figure 3.3. 

 12



www.manaraa.com

Although time of flight imaging can provide a very powerful tool for capturing the 

walls of venous structures, it does have limitations.  Subject motion during a time of 

flight scan can cause misregistration of the image.  Pulsatile flow of blood can also 

cause motion artifacts including blurring, making arterial structures such as the aorta 

more difficult to accurately capture [16]. 

 
3.4.2 Breath Holds 

Acquisition of images during breath holds reduces breathing-related artifacts 

such as ghosting, blurring, and misregistration [17].  Misregistration can still occur if the 

flow is oblique within the image plane.  It arises from the difference in time between the 

phase encoding and the frequency encoding gradients.  The purpose of capturing 

images during breath holds was to isolate the contributions of respiration from the 

effects of LBNP on changes in vena cava dimensions.  Images during end-inspiration 

and end-expiration were captured during steady-state –35 mmHg LBNP and during 0 

mmHg control. 

 

3.4.3 TurboFLASH 

TurboFLASH is a fast image acquisition technique that captures each image in 

less than two seconds.  Coupled with echogating (timing image acquisition to heart 

beat), this acquisition eliminates motion artifacts related to heart motion and lower 

frequency cycles such as breathing.  The reduced image resolution of this acquisition 

reduces edge definition, making it harder to identify vessel walls [14].  Despite its 

imprecision for edge detection, the speed of image acquisition made TurboFLASH a 

desirable technique for visualizing changes to the size and shape of the inferior vena 

cava as LBNP was ramped during the relatively brief span of one minute.  Figure 3.4 

illustrates an example of a TurboFLASH image of the inferior vena cava as it passes 

through the liver. 

 
3.5 Data Processing 

Images were analyzed with QuantIm image processing software by Zedec 

Technologies, Inc.  The raw images were transferred from the Siemens MRI system to a 

UNIX-based workstation that had been loaded with the software.  After loading an axial 
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or coronal image of the vena cava into the software package, the vena cava was 

separated from the rest of the image by using a variety of techniques.    

For example, in several time of flight images, venous branches that led into the 

vena cava had to be distinguished from the vena cava, requiring manual separation 

(segmentation) within the images.  Some time of flight images were affected by pulsatile 

blood flow in the aorta which caused the image of the aorta to smear, sometimes into 

the image of the vena cava; manual separation of the imaged vessels was necessary in 

these cases, too. 

Separation of the vena cava from the rest of the image was facilitated by 

manually drawing a boundary along the vessel edge.  The software’s “Segment” 

function then used gray levels to identify discrete structures.  Utilization of a Sobel filter 

enhanced the precision of vessel identification.  The Sobel filter improved the accuracy 

of edge detection by focusing on sharp changes and ignoring noise.  The Sobel filter, 

the sum of two convolutions, applied the algorithm in Equation 3. 

G0(x,y) = |Dxi(x,y)| + |Dyi(x,y)|                           (Eq. 3) 

Dxi was the gradient of the image in x, and Dyi was the gradient of the image in y [18]. 

Following user selection of the isolated vena cava, the software created an 

image contour map, selecting the outermost, continuous path of pixels corresponding to 

the vessel edge.  The contour map defined a Cartesian coordinate pair for each pixel.  

The Cartesian coordinate pairs were then used to measure cross sectional area, 

perimeter, maximum diameter, minimum diameter, angle of maximum diameter, and 

angle of minimum diameter. 

 Gray scale mapping was only used with the coronal images and with the purpose 

of enhancing the precision of vessel identification.  It required the user to draw a “profile 

line” across a region of interest.  The software then plotted gray levels of the image 

across the user-defined lined, as depicted in Figure 3.5.  The output of this function 

provided valuable information to the user for accurately and precisely defining the 

vessel edges. 

In order to compare volumes that were imaged before and during steady-state 

LBNP, the imaged regions had to be matched.  Axial vena cava images were matched 

by consistently targeting the region beginning at the tenth thoracic vertebra.  Matching 
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was also confirmed following image acquisition but prior to data processing by 

examining photographic films containing every slice in each data series.  By mounting 

this film onto a light box, multiple data sets could be compared side-by-side to confirm 

the presence of specific landmarks.  Axial slices of the vena cava were matched by a 

fixed, rigid coordinate system that was based on the tenth thoracic vertebra.  Although 

we always imaged a 3.6 cm length of the inferior vena cava beginning at the level of the 

tenth thoracic vertebra and progressing toward the level of the eleventh thoracic 

vertebra, we cannot guarantee that the 3.6 cm vena cava segment that was measured 

during control was the exact same 3.6 cm segment that was measured during –35 

mmHg LBNP.  The inferior vena cava could have shifted along the Z-axis as a result of 

LBNP, causing us to image a different segment of the inferior vena cava.  

In an attempt to ensure analysis of the same inferior vena cava segment under 

all conditions, coronal vena cava images were obtained from the same plane in fixed 

space.  This plane was selected by comparing several adjacent coronal images of the 

liver, seeking a slice that clearly showed the inferior vena cava traversing the liver from 

portal entry to portal exit.  Figure 3.7 shows four adjacent coronal slices across the liver.  

Slice B is the only one of these slices that includes a clear image of the inferior vena 

cava as it traverses the liver from portal entry to portal exit.  The physical space 

corresponding to this slice was then selected for obtaining eighteen coronal 

TurboFLASH images as LBNP was ramped from 0 to –35 mmHg (“LBNP ramp-up”) or 

from –35 to 0 mmHg (“LBNP ramp-down”).  This physical space was also imaged six 

times during the first minute of steady-state control and steady-state –35 mmHg LBNP.  

Because each subject went through two LBNP applications in the MR chamber, two 

sets of these data were available for each subject.  Review of the images, however, 

provided two complete sets for five male subjects but no complete sets for the female 

subjects.  For several female subjects, the inferior vena cava was not captured at all 

during LBNP ramp-up.  For the remaining female subjects, the inferior vena cava 

disappeared from the images before completion of LBNP ramp-up.  In the complete 

sets, the vena cava was visible throughout each ramping process and during the first 

minute of each steady-state condition (0 mmHg and –35 mmHg).   
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Table 3.1: Experimental Protocol 

Time Step 

7:00 PM 
Admit subject to UK CRC.  Fluid I/O begins.  Record subject height, weight, 

age, and calf circumference. 

9:00 PM Research staff leave floor nurses to begin monitoring subject activity. 

10:00 PM Check blood pressure, heart rate, and offer snacks. 

7:00 AM 
Awaken subject.  Apply intravenous (antecubital) catheter with heplock to 

subject’s right arm.  Walk around hospital. 

7:30 AM Subject eats a light, low fat, low protein breakfast. 

8:00 AM 
Subject lies in supine position.  Apply sensors for arterial pressure, thoracic 

impedance, ECG, Calf Circumference, radial artery flow, and skin flows. 

8:30 AM Begin recording 20 minutes of control data (subject is supine and resting). 

8:45 AM 
Draw 0.5 cc hematocrit blood samples in one-minute intervals for four 

minutes (2 cc).   

8:49 AM Draw hormonal blood samples (9 cc). 

8:50 AM 

End control and begin LBNP/LBPP (15 minutes each with an intervening 

five minute break) protocols (randomized by subject).  Draw hormonal 

blood samples during the final two minutes of LBNP (-35 mmHg) and 

during the final two minutes of LBPP (+15 mmHg).   

 

Continue drawing 0.5 cc hematocrit blood samples during LBNP and 

during the first five minutes of recovery following LBNP. (13.5 cc)  Continue 

drawing 0.5 cc hematocrit blood samples during LBPP and during the first 

five minutes of recovery following LBPP (13.5 + 2cc control).    

9:40 AM Complete first run.  Set up for echocardiogram studies. 

10:00 AM 
Begin recording ten minutes of echocardiography control data (e.g, End 

Diastolic Volume, End Stroke Volume). 

10:10 AM Begin fifteen minutes of LBNP. 

(continued on next page) 
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Table 3.1: Experimental Protocol (continued from previous page) 

Time Step 

10:25 AM End LBNP and begin five minutes of recovery. 

10:30 AM Subject ambulatory for light snack and transport to MRISC. 

11:00 AM Subject lies in supine position on MRI table. 

11:05 AM 
Apply sensors for LBNP, ECG, Arterial Pressure, temperature, PO2, and 

CO2. 

11:20 AM 
Acquire MRI anatomical images while repeating resting control, LBNP and 

LBPP protocols [without blood draws]. 

12:00 PM Change MRI parameters for perfusion and diffusion data collection. 

12:20 AM 
Acquire MRI perfusion and diffusion images while repeating resting control, 

LBNP and LBPP protocols [without blood draws]. 

1:00 PM Subject ambulatory for lunch.   

1:15 PM Check fluid balance and remove venous catheter. 

1:30 PM Dismiss subject. 
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Figure 3.1: (left) LBNP Chamber in MR Imager, View from Back of Magnet; (right) LBNP 

Chamber and Experimental Subject in MR Imager, View from Front of Magnet 
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Figure 3.2: Time of Flight Conceptual Drawing 
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Vena Cava 
Aorta 

Figure 3.3: Example of Time of Flight Image of Inferior Vena Cava 
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 IVC at Portal Exit 

IVC at Portal Entry

 
 
Figure 3.4: Example of TurboFLASH Image of Inferior Vena Cava  
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Figure 3.5: Gray Scale Mapping of the Inferior Vena Cava and Adjacent Tissue 
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Figure 3.6: Example of Matched Axial Vena Cava Images – A) Pre-LBNP, B) –35 

mmHg LBNP 
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Figure 3.7: Coronal, T1 Weighted Slices Across Liver Obtained to Identify the Inferior 

Vena Cava 
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4 Results 

 

4.1 Cross-sectional Area of Inferior Vena Cava 

For each subject, a 3.6 centimeter length of the Inferior Vena Cava (IVC) starting 

at the level of the tenth thoracic vertebra and proceeding toward the level of the 

eleventh thoracic vertebra was imaged as six consecutive, adjacent, non-overlapping 

0.6 centimeter axial slices.  This region was measured during steady state pre-LBNP [0 

mmHg] and during steady state LBNP [–35 mmHg].  During each steady state condition, 

the region was imaged twice: once during end inspiration breath hold and once during 

end expiration breath hold.  The Time-Of-Flight imaging sequence was utilized to 

acquire these images.  Assuming uniform cross-sectional area of the IVC within each 

slice, volume of the imaged region of the vessel was calculated by Equation 4. 

Volume = 0.6 Σ Areai                                   (Eq. 4) 

Four factor Analysis of Variance of the data identified which variables and 

interactions were significant.  The four factors in the model were  

1) Gender [male versus female],  

2) LBNP [0 mmHg versus –35 mmHg],  

3) Breath Hold [end inspiration versus end expiration], and  

4) Subject ID [1 through 20]. 

Gender (p < 0.0005), LBNP (p < 1.02211 x 10-9), and Subject ID (p < 3.30052 x 

10-9) were significant main factors.  Breath Hold (p < 0.395282) was not a significant 

main factor.  Although Gender and LBNP were individually significant, their interaction 

was not statistically significant (p < 0.695876). 

Although gender was a significant factor with the non-normalized data, it was no 

longer significant after normalization against body surface area (p < 0.19).  Body 

surface area was calculated by using the Mosteller Formula shown in Equation 5. 

Body Surface Area (m2) = ([Height(cm) x Weight(kg)]/3600)1/2            (Eq. 5) 

Figure 4.1illustrates the volume of the selected section of the IVC as a function of 

gender, LBNP, and respiration.  This graphical presentation of the data visually 

reinforces the statistical conclusions.  Comparisons between end inspiration and end 

expiration breath holds do not suggest any clear relationship between respiration and 
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volume of the inferior vena cava at the level of the tenth thoracic vertebra.  At 0 mmHg, 

IVC volume was two percent smaller during end inspiration than during end expiration; 

at –35 mmHg, IVC volume was 22% larger during end inspiration than during end 

expiration.  However, these differences were not statistically significant (p < 0.395).  

Because respiration was not a statistically significant factor, and because the interaction 

between respiration and LBNP was not statistically significant, the 22% difference in 

IVC volume between breath holds during –35 mmHg LBNP could not, for the purposes 

of this study, be used to represent a change that can be directly attributed to either 

respiration, LBNP, or their interaction. 

Although differences due to breathing were not statistically significant, the 

differences due to gender and LBNP were.  The breath hold data in Figure 4.1 were 

regrouped in order to generate the data in Figure 4.2.  For each combination of gender 

and LBNP (e.g., women at 0 mmHg, women at –35 mmHg, men at 0 mmHg, men at –

35 mmHg), the end expiration and end inspiration breath hold data were combined.  

Figure 4.2 illustrates the volume of the selected section of the inferior vena cava as a 

function of gender and LBNP but independent of respiration.   During control conditions 

(0 mmHg), women’s IVC volume was 17% smaller than men’s IVC volume.  During 

steady-state –35 mmHg LBNP, women’s IVC volume was 32% smaller than men’s IVC 

volume.  Men’s IVC volume decreased 36% from control to –35 mmHg LBNP; women’s 

inferior vena cava volume decreased 48% from control to –35 mmHg.  

 

4.2 Time History Changes in the Width of the Inferior Vena Cava 

In order to observe the immediate impact of LBNP on the inferior vena cava, 

eighteen coronal images of the IVC, where the IVC traversed the liver, were acquired 

over the minute that pressure was steadily ramped from 0 to –35 mmHg (“LBNP ramp-

up”).  Six more coronal images of the same IVC section were imaged during the first 

minute of steady state LBNP.  Similarly, eighteen coronal images of the IVC were 

acquired over the minute that pressure was steadily ramped from -35 to 0 mmHg 

(“LBNP ramp-down”); and six more images were acquired during the first minute of 

steady state recovery.  The TurboFLASH imaging sequence was utilized to acquire 

these images.  The width of the IVC was measured both where it entered the liver 
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(“portal entry”) and where it exited the liver (“portal exit”).  The descriptions “portal entry” 

and “portal exit” have been assigned with respect to the direction of blood flow in the 

inferior vena cava through the liver, toward the heart.  The resulting data is illustrated in 

Figure 4.3. 

 During control and recovery, vena cava width at portal exit (VCWexit) was 64.4% 

larger than vena cava width at portal entry (VCWentrance) (p < 0.0003).  As Figure 4.3 

clearly illustrates, VCWexit was always larger than VCWentrance.  LBNP ramp-up caused 

VCW to decrease at both measurement sites (p < 0.001).  From control to the end of 

LBNP ramp-up, VCWentrance decreased by 61.6% and VCWexit decreased by 45.8%.   

 During the first minute of steady-state –35 mmHg LBNP, both VCWentrance and 

VCWexit exhibited a “rebound” effect by increasing 13% and 21.2% of their original 

control values, respectively.  This moderate recovery was statistically significant (p < 

0.005).  Interestingly, neither measurement site appeared to continue recovering past 

the first minute of steady-state –35 mmHg LBNP; this observation is based on the 

negligible difference between each measurement site’s width one minute into steady-

state –35 mmHg LBNP and fourteen minutes into steady-state –35 mmHg LBNP.  

During LBNP ramp-down, both VCWentrance and VCWexit completed recovery toward their 

initial control values.   

The decreases in VCW at both measurement sites during LBNP ramp-up appear 

to be quadratic functions of time or LBNP (assuming the rate of change of LBNP was 

constant).  Figure 4.4 focuses on the LBNP ramp-up portion of the VCW data set.  The 

following relationships were obtained: 

For VCWentrance as a function of LBNP during ramp-up: 

VCWentrance = 0.0096(LBNP)2+0.6731(LBNP)+20.096, R2  = 0.9654         (Eq. 6) 

For VCWexit as a function of LBNP during ramp-up:  

VCWexit = 0.114(LBNP)2+0.7869(LBNP)+31.13, R2 = 0.9629                     (Eq. 7) 

Vena Cava Width changes at both measurement sites during the first minute of 

steady-state LBNP appear to be linear functions of time [but not of LBNP since it was 

held constant].  Figure 4.5 illustrates the steady-state –35 mmHg LBNP portion of the 

VCW data set.  The following relationships were obtained: 

For VCWentrance as a function of time during steady-state LBNP: 
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VCWentrance = 0.0592(time)+8.7172, R2  = 0.995                       (Eq. 8) 

For VCWexit as a function of time during steady-state LBNP: 

VCWexit = 0.0503(time)+18.117, R2 = 0.9712                       (Eq. 9). 

Vena Cava Width changes at both measurement sites during LBNP ramp-down 

appear to be linear functions of time or LBNP.  Figure 4.6 focuses on the LBNP ramp-

down portion of the VCW data set.  The following relationships were obtained: 

For VCWentrance as a function of LBNP during ramp-down: 

VCWentrance = 0.224(LBNP)+20.255, R2  = 0.9892                      (Eq. 10) 

For VCWexit as a function of LBNP during ramp-down: 

VCWexit = 0.2534(LBNP)+32.244, R2 = 0.9645                     (Eq. 11)  

The high R2 values for Equations 6 through 11 suggest that each equation provides a 

very good fit against the available data.   

Vena Cava Width changes at both measurement sites during the first minute of 

recovery do not appear to fit a linear or quadratic equation.  Changes during this period 

appear to be a combination of return to original control values along with some variation 

due to noise.  Figure 4.7 shows the recovery portion of the VCW data set.  The R2 

values corresponding to the equations for recovery are not as high as the R2 values 

corresponding to the other equations mentioned above, making the recovery equations 

tenuous approximations.
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Figure 4.1: Inferior Vena Cava Volume vs. Gender, LBNP, Respiration
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Figure 4.2: Inferior Vena Cava Volume vs. Gender, Lower Body Negative Pressure
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Figure 4.3: Vena Cava Width versus Lower Body Negative Pressure
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Figure 4.4: Vena Cava Width during Lower Body Negative Pressure Ramp-Up
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Figure 4.5: Vena Cava Width During First Minute Steady-State Lower Body Negative Pressure
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Figure 4.6: Vena Cava Width During Lower Body Negative Pressure Ramp-Down
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Figure 4.7: Vena Cava Width During First Minute Steady-State Recovery
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5 Discussion 

 

5.1 Volume of the Abdominal Inferior Vena Cava 

In the present study, the lack of a statistically significant relationship between 

breath holds and volume of the inferior vena cava at the entrance and exit of the liver 

appears to be inconsistent with existing knowledge of relationships between respiration 

and volume of the inferior vena cava.  An ultrasound study of 85 humans subjects 

observed partial collapse of the inferior vena cava during inspiration and maximum 

distension at end expiration [19].  A subsequent study of 14 human subjects measured 

inferior vena cava volume with an impedance catheter during normal, quiet respiration.  

This study noted that extrathoracic inferior vena cava volume rose with expiration while 

intrathoracic inferior vena cava volume decreased with expiration [20].  “Extrathoracic 

inferior vena cava” describes the region of the vena cava that lies below the diaphragm, 

and “intrathoracic inferior vena cava” refers to the region of the inferior vena that lies 

above the diaphragm.  Based on these earlier studies, volume of the abdominal inferior 

vena cava (i.e., below the diaphragm) should be at a minimum at end inspiration; at end 

expiration, the volume should be at a maximum. 

Even though the breath hold data from the present study was not statistically 

significant, an evaluation of the trends in the data may offer some additional insight.  

During control, volume of men’s inferior vena cava was 5.2% smaller at end expiration 

than at end inspiration.  During LBNP, the contrast was more substantial with a 

decrease of 27.4% from end inspiration to end expiration.  During LBNP, volume of 

women’s inferior vena cava decreased 2.7% from end inspiration to end expiration.  The 

expected contrast in volume of the inferior vena cava was apparent only in women 

during control when inferior vena cava volume was 12.5% larger at end expiration than 

at end inspiration. 

The reasons for the inconsistencies within data of the present study as well as 

between the present study and those of other studies are not clear.  The data could 

have been affected if subjects strained themselves during breath holds.  The length of 

time for every breath hold was constant across all subjects, but the ability to hold one’s 

breath varies from person to person.  Some subjects may have also found one breath 
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hold to be more difficult than the other.  Because some subjects may have struggled to 

maintain the breath holds, the data may have been affected by strain, thereby 

compromising the comparisons between breath holds.   

The inconsistencies could also be a result of tethering of the vessel walls to the 

surrounding tissue, making it less responsive to breathing than segments measured in 

other studies.  It appears that the other studies measured the effect of respiration on a 

different part of the inferior vena cava than the segment analyzed in the present study 

and, therefore, could have different tethering to their surrounding tissues. 

The inconsistencies could also be a result of differences in experimental 

protocols.  While the present study isolated end expiration and end inspiration by 

requiring test subjects to hold their breath, the other studies measured size of the 

inferior vena cava during normal, quiet respiration.  Perhaps response to the transient 

disturbance of normal breathing differs from response during steady-state breath holds.  

For example, just as the width of the inferior vena cava partially recovered during the 

first 60 seconds of steady-state LBNP following LBNP ramp-up, changes to inferior 

vena cava volume may have also recovered during steady-state breath holds following 

normal breathing.  

Inconsistencies during LBNP in the present study could be a consequence of the 

orthostatic stress itself.  The impact of LBNP upon the inferior vena cava could be so 

much more significant than the impact of respiration that it effectively masks variations 

due to breathing.  The difference in intrapleural pressure between end expiration and 

end inspiration is roughly 4 cm H2O or 2.9 mmHg [6].  Even though LBNP was directly 

applied to the body below the inferior vena cava (beginning at the iliac crest of the hip), 

its effect upon the inferior vena cava was both statistically and physiologically 

significant.  The –35 mmHg stress could very likely impact inferior vena cava volume far 

more than the 2.9 mmHg oscillation of respiration. 

While changes to inferior vena cava dimensions due to respiration appear 

unclear, the observed consistent and sizable volume decrease resulting from LBNP 

merits a key question: Was the impact of LBNP on vena cava size real, or was it an 

indication of vessel displacement along the Z-axis (stretching/compression, sliding)?  

Recall this study’s use of a rigid coordinate system, focusing on a fixed 3.6 cm space 
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rather than on a fixed 3.6 cm length of the inferior vena cava.  Consequently, movement 

by the vessel along the Z-axis was not captured by the images and therefore possibly 

influenced the accuracy of the data.   

On the other hand, if the inferior vena cava slid along the Z-axis during LBNP, it 

would have slid away from the heart, toward the abdomen.  Because the inferior vena 

cava gets wider as it approaches the heart, we would expect this displacement to be 

seen as an increase in axial cross-sectional area and in coronal width.  Although this 

certainly may have happened, the vessel’s tendency to collapse during LBNP was far 

more evident than any displacement that might have occurred.  Even if the vessel slid 

along the Z-axis, this movement does not decrease the significance of our observations 

regarding volume and width of the inferior vena cava.  Rather, the possibility of 

displacement could make the observed changes even more significant physiologically 

because a wider section closer to the heart during control would have had to slide along 

the Z-axis and collapse even more than the segment that was visualized during control. 

 

5.2 Inferior Vena Cava Width as a Function of Changes in LBNP 

The observed changes in inferior vena cava width at portal entry and at portal 

exit during all three phases of LBNP (ramp-up, steady-state, and ramp-down) 

supplement existing knowledge of cardiovascular response to orthostatic stress.  

Reductions in vena cava width at portal entry and at portal exit suggest that transmural 

pressure at both measurement sites dropped as a result of LBNP.  In order for 

transmural pressure to decrease, the intravascular pressure at these two measurement 

sites must have dropped because the body at the measurement sites was outside the 

LBNP chamber and was therefore at atmospheric pressure during the measurements.  

Indeed, in another study conducted in our laboratory, central venous pressure was 

measured during LBNP and revealed that central venous pressure in the thoracic region 

decreases as LBNP becomes more negative.  Figure 5.1 illustrates this relationship 

between central venous pressure and LBNP. 

Venous pooling in the lower extremities is a well-documented result of LBNP, 

and this response apparently does not extend up to the abdominal inferior vena cava.  A 

static region of the venous circulation must exist somewhere in between the collapsing 
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inferior vena cava and the distending veins of the lower extremities.  Presumably, no 

change in volume would be observed at this transition point.  One possible location for 

this transition point could be somewhere near the level of the iliac crest since that region 

marks the boundary between atmospheric pressure and negative pressure. 

The inferior vena cava’s response to all three phases of LBNP is most likely a 

result of four factors: 1) the vessel’s intrinsic mechanical properties (i.e., its basic 

material compliance), 2) its physical connections (i.e. tethering and anchoring of the 

vessel) to surrounding tissues, 3) physiological control of vessel width (e.g., 

vasodilation/vasoconstriction as a result of neural and/or hormonal mechanisms), and 4) 

fluid volume regulation by the cardiovascular system in response to the orthostatic 

stress.  Factors 2 and 3 when added to factor 1 produce an “effective compliance”.  

Factor 4 relates to the fact that the segment under examination is in a closed fluid circuit 

that can absorb or release fluid and therefore change intravascular pressure and fluid 

volume in response to orthostatic stress and associated neurally mediated 

responses[21].  The change in intravascular pressure can also contribute to change in 

transmural pressure, resulting in change to vessel width. 

Therefore, in the present study, all four factors could be responsible for observed 

differences in vena cava response at portal entry and at portal exit: 1) the material 

compliance of the inferior vena cava at the portal exit could be higher than at portal 

entry; 2) the effective compliance at the portal exit could be higher than at portal entry 

because of tissue surrounding, tethering, and anchoring the vessel and/or because of 

vasoconstriction/vasodilation; 3) a change in the blood pressure gradient could have 

occurred along the length of the inferior vena cava due to changes of fluid moving into 

the circulation in response to the onset of LBNP.   

For example, the inferior vena cava exhibited a partial recovery during the first 

minute of steady-state LBNP.  Further recovery was not apparent at the next data point 

fourteen minutes later.  An increase in plasma volume in response to the first two 

minutes of –35 mmHg LBNP has previously been reported and is thought to be a direct 

result of sympathetically mediated vasoconstriction in response to LBNP [21, 22].  The 

inferior vena cava completely recovered back to its control widths by the end of LBNP 

ramp-down.  The absence of hysteresis when comparing inferior vena cava width during 
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control and during recovery suggests that there were no relatively long-term residual 

changes such as creep or relaxation of the vessel’s mechanical properties or sustained 

vasoconstriction or vasodilation after the exposure to LBNP.   

Recall that the vessel’s response to LBNP ramp-up was a quadratic equation 

according to Equations 6 and 7.  The partial recovery during steady-state LBNP was a 

linear equation per Equations 8 and 9.  The completion of recovery during LBNP ramp-

up was a linear equation documented by equations 10 and 11.  Thus, recovery during 

steady-state LBNP could reflect some combination of the vessel’s material compliance 

with cardiovascular regulation (i.e., vasodilation).  Recovery during LBNP ramp-down 

appears to correspond to the inferior vena cava’s effective compliance and perhaps to 

regulation as well.  The inferior vena cava recovered from LBNP ramp-up as much as 

its material compliance allowed while still subjected to a constant –35 mmHg stress.  As 

the –35 mmHg stress diminished toward zero mmHg during LBNP ramp-down, the 

vessel continued toward its control widths at both measurement sites in a linear fashion, 

dependent upon the level of LBNP stress.  There appears to be a change to the relative 

contributions of the inferior vena cava’s four response factors as LBNP progressed from 

ramp-up to steady-state and on to ramp-down.  While the vessel returned to its control 

state, the combination of factors dictating its response during LBNP ramp-up appeared 

to differ from the combination of factors dictating its response during steady-state LBNP 

and during LBNP ramp-up. 

As vessel width increased at both measurement sites during steady-state LBNP, 

presumably the intravascular pressure at each site also increased.  If the change in 

intravascular pressure during the first minute of steady-state LBNP (dP/dt) was known, 

the slopes of equations 7 and 8 (change in width per change in time, dW/dt) could be 

divided by the equivalent change in intravascular pressure to identify the material 

compliance at each site.  This method for calculating material compliance of the inferior 

vena cava at each site is represented by Equation 12. 

Material Compliance = [dW/dt] * [dP/dt]-1                     (Eq. 12)   

The inferior vena cava’s effective compliance can be calculated by using the 

relationship between LBNP and central venous pressure illustrated in Figure 5.3.  The 

slopes of equations 10 and 11 (change in width per change in LBNP, dW/dPLBNP) can 
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be divided by the equivalent change in central venous pressure to identify the effective 

compliance at each site.  This method for calculating effective compliance of the inferior 

vena cava at each site is represented by Equation 13. 

Effective Compliance = [dW/ dPLBNP] * [dPCV/ dPLBNP]-1                   (Eq. 13) 

Assuming that the rate of LBNP ramp-down was linear, the result of Equation 13 should 

match the slopes of Equations 10 and 11. 

While all of the interrelationships amongst the possible mechanisms discussed 

above could have changed from LBNP ramp-up to steady-state LBNP and on to LBNP 

ramp-down, the specific relative contributions of each factor to the measured response 

of the inferior vena cava is beyond the scope of the present study.   
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Figure 5.1: Central Venous Pressure vs. Lower Body Negative Pressure
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6 Conclusions 

Data from this study did not reveal any differences in size of the inferior vena 

cava between end inspiration and end expiration breath holds in either gender during 

control and during –35 mmHg LBNP.  However, the effects of –35 mmHg lower body 

negative pressure upon axial cross-sectional area and coronal width of the inferior vena 

cava were statistically and physiologically important.  The present study provided the 

following major findings: 

1) IVC volume for men and women combined decreased 41% due to LBNP (p < 

1.02 x 10-9); 

2) women’s gross IVC volume was 23% smaller than men’s during control and 

LBNP (p < 0.0005); however, normalization against body surface area eliminated 

statistical significance of this difference; 

3) the IVC volume change caused by LBNP was not statistically different between 

genders (p < 0. 696); 

4) respiration had no statistically significant impact on IVC volume (p < 0.395); 

5) men’s IVC width was 64.4% wider at portal exit than at portal entry (p < 0.0003); 

6) –35 mmHg LBNP induced a decrease in men’s vena cava width up to 46% at 

portal exit and up to 62% at portal entry. 
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